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Path-averaged optical soliton in double-periodic dispersion-managed systems
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A path-averaged Gabitov-Turitsyn model governing optical signal propagation down the dispersion-managed
~DM! transmission line is studied numerically. A different numerical algorithm to find a soliton solution for an
arbitrary periodic DM system is proposed. Applying developed technique we analyze soliton solutions for few
important practical systems.
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I. INTRODUCTION

Dispersion management is a key technique in high-
rate optical data transmission. The dispersion-managed~DM!
transmission systems use a periodic alternation of pos
and negative dispersion fiber pieces. The aim of dispers
management is to minimize path-averaged dispersion of
while keeping high enough local dispersion. In the line
regime, total compensation of the path-averaged disper
would lead to the total recovery of the signal. However,
nonlinear propagation regimes an arbitrary pulse canno
completely recovered at the ends of periodic sections. Th
possible only for pulses of the special form—DM solitons.
this paper, we construct such special pulses for a rang
double-periodic DM systems within the path-averaged mo
@1#.

II. PATH-AVERAGED MODEL IN SPECTRAL DOMAIN

The propagation of an optical pulse in a DM fiber line
described by a normalized nonlinear Schro¨dinger equation
~NLSE! with periodically varying coefficients,

iAz1d~z!Att1c~z!uAu2A50, ~1!

whereA is a scaled envelope, periodic functiond(z) with the
periodT1 is a dispersion of the line~a dispersion map! and
T2-periodic functionc(z) describes power oscillations due
loss or gain variations in the line. Discussion of the physi
effects leading to Eq.~1! and typical parameters can b
found in Ref.@2#. We follow here notations and normaliza
tions introduced in Ref.@2#: z is normalized to a lengthZ0 ~in
km! defined below; timet is measured in some time consta
t0 ~in ps! that can be specified for each specific problem;
envelope of the electric fieldE is normalized to the powe
parameterP0 ~in W!, uEu25P0uAu2exp@22g(z2zk)# for zk
<z,zk115 zk1Za /Z0, whereg is a coeffecient of a fiber
1063-651X/2002/66~6!/066607~6!/$20.00 66 0666
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loss. Function d(z)5d̃(z)1^d&52b2(z)Z0 /(2t0
2) de-

scribes periodic compensation of dispersion~with the period
L in physical units!, whereb2 is the first-order group veloc
ity dispersion. Periodic~with the periodZa in real world
units! function c(z)5 c̃(z)1^c&52pn2P0Z0exp@22g(z
2zk)#/(l0Aef f) for zk<z,zk115 zk1Za /Z0 describes the
power variation due to fibre loss and amplifier gain that
accounted through transformation of the pulse power at ju
tions corresponding to the locationszk of the optical ampli-
fiers, where n2 is the nonlinear refraction index,l0
51.55mm is the carrier wavelength,Ae f f is the effective
fiber area. The amplification distanceZa in general can be
different from the compensation periodL. We consider a
general case whenL and Za are rational commensurable
namely,nZa5mL5Z0 with integersn andm. This includes
as particular limits all known and studied cases and allows
to describe a regime with short-scale (L!Za) management.
The distancez5Z/Z0 is normalized in Eq.~1! by a minimal
common periodZ0 of the functionsd andc and the averag-
ing throughout the paper is over this period. In the norm
ized units periodicd andc have basic periodsT151/m and
T251/n, respectively.

If a characteristic nonlinear length of the pulse is larg
than the period of the dispersion variations then one
apply an averaging approach to simplify the basic equat
The resulting path-averaged Gabitov-Turitsyn equation@1#
presented in the spectral domain takes the following form

iCz2^d&v2C1G~C,v!50, ~2!

where C(vk) is a Fourier transformation of an average
variable, ^d&5*0

1d(z)dz is an average dispersion, an
G(C,v) is a nonlinear integral operator,

G~C,v!5E Tv123C* ~v1!C~v2!C~v3!d

3~v1v12v22v3!dv1dv2dv3 , ~3!
©2002 The American Physical Society07-1
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with a matrix elementTv123 that is a complex function of a
specific combinationDV5v21v1

22v2
22v3

2,

Tv1235T~DV!5E
0

1

c~z!eiR(z)DVdz. ~4!

A function R(z) is defined from equationRz5d(z)2^d&.
Equation~2! has a standard form typical for models descr
ing a four-wave interaction with quadratic dispersion la
Specific properties of the model are then given by a dep
dence of the matrix elementT on DV. In the case of the
so-called weak dispersion management@‘‘small’’ overall ef-
fect of a variation ofR(z)] Eq. ~2! can be reduced to NLSE
with constant coefficients@3#. In this paper, we construc
numerically exact periodic solutions~DM solitons! of the
path-averaged model~2! for a range of practical DM lines.

A. Soliton solution

Similar to the well-studied NLSE (T51), we seek a soli-
ton solution of Eq. ~2! in the form C(v,z)
5c(v)exp(il2z). An equation for a DM soliton shapec(v)
takes a form

~l21^d&v2!c5G~c,v!. ~5!

Note that for a real matrix elementT one can find solution of
this equation with a real functionc(v). In general case the
matrix elementT is a real function only for partial subclasse
of transmission systems and corresponding coefficientsd(z)
andc(z). The well-known and studied case of the real m
trix element is a lossless two-step DM system with mat
elementT5c0sin(sDV)/(sDV), where s is a map strength
andc(z)5c0 @4#. Another important example of the real m
trix element is a long-scale dispersion-managed line@5#.
Note, however, that for a short-scale dispersion managem
the corresponding matrix element is complex. Here we
the long or short scale if the length of the dispersion m
agement is greater or smaller than the distance between
plifiers.

An effective numerical method to find a soliton solutio
for Eq. ~5! was proposed by Petviashvili@6,7# and was ap-
plied to DM soliton problems in Refs.@8–10#. A stabilizing
factor of this iteration method can be found easily beca
the right-hand size of the Eq.~5! is a homogeneous functio
with degree 3. See for details Ref.@9#. Iterations used in the
Petviashvili’s method request a computation of the integ
operatorG(c,v). After single integration usingd function,
the operatorG(c,v) includes a double integration, there
fore, in general a computation ofG(c,v) requestsN3 op-
erations, whereN is a number of points. Some advanc
approaches have been developed in Ref.@10,21#. Here we
apply an effective numerical algorithm to solve this proble
The idea of our method is based on an approximation of
matrix elementT(DV) by an appropriate set of functions
This approximation allows us to apply a fast computation
convolutions and to reduce a number of operations
MN log2(N), where M depends on the approximation o
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T(DV). The main goal of this paper is to study properties
the path-averaged DM solitons in few practical systems
ing proposed method.

B. Approximations of the matrix element

If the matrix elementT(DV) is a polynomial or might be
approximated by polynomial then a computation of the in
gral operatorG can be reduced to computation of a sequen
of the correlations and the number of operations is equa
(S2/2)N log2(N), whereS is a power of the polynomial. Con
sider a partial form of the matrix elementT(DV)5(DV)p.
Integrating byv3 we eliminated function,

E @v21v1
22v2

22~v1v12v2!2#pc* ~v1!c~v2!

3c~v1v12v2!dv1dv2 . ~6!

Using the identity v21v1
22v2

22(v1v12v2)252(v1

2v2)(v12v) and introducing a new variablex5v12v2
we get

2pE xp~v21x2v!pc* ~v21x!c~v2!c~v1x!dv2dx.

~7!

Using the Newton formula we obtain

2pE xp(
k50

p

Cp
k~2v!p2k~v21x!kc* ~v21x!c~v2!

3c~v1x!dv2dx. ~8!

Denoting f k(x)5*(v21x)kc* (v21x)c(v2)dv2 we re-
write

2pE xp(
k50

p

Cp
k~2v!p2kf k~x!c~v1x!dx ~9!

52p(
k50

p

Cp
k~2v!p2kgpk~v!, ~10!

wheregpk5*xpf k(x)c(v1x)dx.
It is seen that one has to computep11 integralsf k and

p11 integralsgpk . Thus, we can estimate a number of o
eration as (S2/2)N log2(N) for an arbitrary polynomial of a
powerS.

This computation method can be used for some appr
mations of the initial Eq.~2! @11,12#. In this model the matrix
elementT(DV) is approximated by the quadratic polyno
mial T(DV)5T(0)1T9(0)@(DV)2/2#, that is, the two first
terms of the Taylor series.

III. PATH-AVERAGED MODEL IN TIME DOMAIN

A. Averaged equation

Here we briefly recall previously obtained results on a
eraging of a double-periodic NLSE using slightly differe
approach@5#. Basic model reads
7-2
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iAz1d~z!Att1c~z!uAu2A50, ~11!

here the functionsd(z) and c(z) are periodicd(z)5d(z
1T1) andc(z)5c(z1T2).

The first transform is called Floquet-Lyapunov one a
eliminates the periodicity ofd(z),

A~ t,z!5eiR(z)D2
B~ t,z!,

dR

dz
5d~z!2^d&, Dª

]

]t
,

^ f &ªE
0

1

f ~z!dz. ~12!

The equation takes the form

iBz52^d&D2B2c~z!e2 iR(z)D2
@ ueiR(z)D2

Bu2eiR(z)D2
B#.

~13!

The right-hand side~rhs! is periodic and we are able t
average this equation. To average Eq.~13! in a correct way
the rhs should be small or Eq.~13! should have the so-calle
Bogolyubov standard form@13#.

The operatoreiR(z)D2
and its inverse one in the nonlinea

term are bounded for any real functionR(z) because in Fou-
rier space it is an exponential factore2 iR(z)v2

. Therefore, we
assume thatc(z) is small function. In the linear term we
have a combination̂d&D2 and therefore we can assume th
this combination is a small operator. Using a small param
« we specify the parameter^d&, the functionc(z), and the
operatorD2 to have the following scaling:

^d&D2;«, c~z!;«. ~14!

The first relation means that a soliton is not very narrow
^d&Þ0. The second condition means that the nonlinearit
weak. Further, we imply these scales for a notationO(«) and
similar.

Next we apply the so-called Bogolyubov-Krylov tran
form that eliminates the periodic part of the nonlinear term
The resulting averaged equation is

iCz1^d&D2C1N~C!5O~«2!, ~15!

where

N~C!5E
0

1

c~s!e2 iR(s)D2

3@ ueiR(s)D2
C~z,t !u2eiR(s)D2

C~z,t !#ds. ~16!

The corresponding transform has the following form:

B5C1 i E
0

z

$c~s!e2 iR(s)D2
@ ueiR(s)D2

C~s,t !u2eiR(s)D2
C~s,t !#

2N~C!%ds. ~17!
06660
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B. Averaged operator

In the case of two-step dispersion map built from a pie
of a fiber with dispersiond11^d& and lenghtl 1 followed by
a piece of a fiber with dispersiond21^d& and lengthl 251
2 l 1, the operatorN takes the form

N~C!5
1

sE2s/2

s/2

S~y!e2 iyD2
@ ueiyD2

C~z,t !u2eiyD2
C~z,t !#dy,

~18!

wheres5d1l 1 and

S~y!5 l 1cF S y

s
1

1

2D l 1G1~12 l 1!cF12S y

s
1

1

2D ~12 l 1!G .
~19!

For the Gabitov-Turitsyn model withc(z)5c0, we get
S(y)5c0.

Note that from Eqs.~18! and~19! it is seen that ifS(y) is
an even function then the matrix elementT is a real function.
In particular, ifl 151/2 thenS(y) is the even function for any
function c(z) and therefore the matrix elementT is real. Or
in other words, without loss of generality, we can choos
free constant in definition ofR(z) to kill the imaginary part
of the matrix element for the long-scale dispersion mana
ment with the equal two-piece elements.

C. Integral approximation

For a computation of integral operatorN(C), we apply
direct method. The first step is to compute the integral w
respect tos using some quadrature relations with weight c
efficientsWm at pointssm

N~C!' (
m50

M

Wmc~sm!e2 iR(sm)D2

3@ ueiR(sm)D2
C~z,t !u2eiR(sm)D2

C~z,t !#. ~20!

To compute the termeiR(sm)D2
C(z,t) we apply the Fourier

transform, then multiply by factore2 iR(sm)v2
, and make the

inverse Fourier transform again. And the last step is to ap
the operatorWmc(sm)e2 iR(sm)D2

using the direct and invers
Fourier transform. This procedure requests 3M11 the Fou-
rier transforms withn log2(n) operations and 4n multiplica-
tions.

Also we remark that the functionR(s) is periodic and it is
reasonable to choosesm for equal values ofR(s). Then we
decrease a number of operations by factor of 2.

IV. EXAMPLES OF COMPUTATION

We apply now our algorithm to find DM soliton solutio
for a general case with different periods of power and d
persion oscillations. We consider different matrix eleme
corresponding to practical fiber optical lines.

The simplest and important example of matrix elemen
T(DV)5c0sin(sDV/2)/(sDV/2), wheres is the dispersion
map strength. This matrix element arises for lossless eq
7-3
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tion with two-step dispersion map.
Next we consider the fiber lines with different~but ratio-

nal commensurable! periods of power and dispersion osc
lations. Namely, we analyze two opposite limits: the sho
scale dispersion management and long-scale two-
dispersion map.

For considered cases, Eq.~5! is characterized by six di
mensionless parameters:l, the averaged dispersion^d&, the
variation of the dispersiond, the nonlinearity parameterc0,
the loss parameterG5exp(2gZa), and the ratio for the length
of the dispersion map and the distance between the am
ers L/Za . For our numeric computation we putl5c051
and choosea50.21 dB/km,g50.05a ln 10, Za540 km for
an evalutaion of the loss parameterG.

A. Long-scale management

First, we consider the case of a long-scale two-step
persion management withL>Za . Let the distance betwee
optical amplifiers beZa ~km! andL52KZa ~km!, whereK
51,2, . . . . Dispersiond(z)5d1^d& if 0 ,z,K and d(z)
52d1^d& if K,z,2K. Mean-free functionR defined
above can be found asR(z)5d(z2K/2)/2 if 0,z,K and
R(z)52d(z23K/2)/2 if K,z,2K. A function c(z) is
c(z)5c0exp(22gz) if 0 ,z,1. The matrix elementT(DV)
of such a system is

T~X!5c0B~G!
sin@XK#

K

1

~11@2X/ ln G#2!

3H cos@X#

sin@X#
1

2X

ln G

G11

G21J , ~21!

X5
DVZad

2L
5

DVd

4K
, B~G!5

G21

G ln G
.

Here gainG5exp(2gZa) (g is a fiber loss!. The matrix ele-
ment has some particular limits. First, ifd50 ~uniform dis-
persion along the system! we reproduce the result of Mol
lenaueret al. @17#: T(DV)5(G21)/(Gln G) and becauseT
is a constant, path-averaged model is just the integrable N
equation. Second limit is the so-called ‘‘lossless’’ model@14#
(g50). In this caseT(DV)5sin(DVd/4)/(DVd/4). For
largeK the matrix element is

T~DV!5c0B~G!
sin~DVd/4!

DVd/4
. ~22!

Note that such matrix element presents the matrix elemen
the lossless model multiplied by the factorB(G), where
B(G)51 asG goes to 1 for the real lossless model.

For a numeric computation we choose the variation of
dispersiond52. Figure 1 shows the power of the true D
solitons obtained as a solution of Eq.~5! for the matrix ele-
ment ~21!. A dashed line corresponds to the DM soliton f
K51 ~two amplifiers for the dispersion period! and a solid
line corresponds to the DM soliton forK540 ~80 amplifiers
for the dispersion period!. Dependence of the energy of DM
soliton ~for two different values of the averaged dispersio!
06660
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on the parameterK is presented in Fig. 2. It is seen that DM
soliton energy is saturated with the growth ofK.

B. Short-scale management

Next we consider the so-called short-scale dispers
management withL!Za @15,16#. We choose the amplifie
distanceZa , a two-step dispersion map with dispersion co
pensation periodL5Za /J ~km!. Dispersion is d(z)5d
1^d& if k/J,z,(k1a)/J and d(z)5da/(a21)1^d& if
(k1a)/J,z,(k11)/J, here k50,1,2, . . . ,J21 and the
parameteraP(0,1) describes a position of the step. T
mean-free functionR defined above can be found asR(z)
5d@z2k/J2a/(2J)# if k/J,z,(k1a)/J and R(z)
5da/(a21)@z2k/J2(a11)/(2J)# if ( k1a)/J,z,(k
11)/J. The matrix elementTv123 has a self-similar struc-
ture,

Tv1235c0B~G!F~a,Z,Y!, ~23!

F~a,Z,Y!5F11
iY

Z2 iY S 12
Z

~eZ21!

e(12a)Z1 iaY21

~12a!Z1 iaY D G
3e2 iaY/2. ~24!

FIG. 1. A dashed line corresponds to the DM soliton forK51
~two amplifiers for the dispersion period! and a solid line corre-
sponds to the DM soliton forK540 ~80 amplifiers for the disper-
sion period! with ^d&50.01.

FIG. 2. Energy of the DM soliton vs parameterK for ^d&
50.005~solid line! and for ^d&50.01 ~dotted line!.
7-4
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Here an amplitudeB is a function ofG5exp(2gZa) only and
is independent onJ. A shapeF(a,Z,Y) is a function of the
parametera and specific combinations ofZ5 ln G/J and Y
5dDV/J.

In the limit d50 we obviously recover results of the tra
ditional path-averaged ~guiding-center! soliton theory
@17–19#. One can see that with increase ofJ ~for the fixed
other parameters! the path-averaged model~2! governing
DM soliton propagation converges to the integrable N
equation withT(0)5c0B(G). It is obvious that in the limit
of a very weak loss~small g) we again obtain forT the
lossless model approximation:Tv1235c0sin(aY)/(aY). How-
ever, increase ofJ ~decrease ofL) under the fixed character
istic bandwidth of the signal makes insignificant oscillato
structure of the kernel@20#. This means that ifT(DV) is
practically concentrated in some region, then for largeJ the
corresponding region inDV will be larger than for smallJ.
For the pulses with the same spectral width this will me
that T is much flatter for largeJ and, as a matter of fact, fo
largeJ ~small L) function T can be well approximated by
value T(0). As a result, NLSE model works rather well in

FIG. 3. The power of the DM solitons~solid line! and the fun-
damental soliton with the same amplitude~dashed line! for different
J.

FIG. 4. The dependence of the DM soliton energy on the av
age dispersion for differentJ: J51 ~solid line!, J540 ~dashed line!,
and for the caseJ tends to infinity~dotted line!.
06660
n

this limit and solution~of the path-averaged model! should
be close to cosh-like soliton of the NLSE. Note that althou
it is known that for the lossless model in the so-called we
map (s,1) limit @1,14,22,23# the DM soliton shape is close
to cosh, this is not so obvious for system with loss and d
ferent periods of amplification and dispersion variation
This also means that all the control techniques developed
the improvement of the traditional soliton transmission c
be directly used in these systems.

For a numerical computation we choose the following p
rameters:a50.5, d50.5, and^d&50.01.

The power of the DM solitons~solid line! and the funda-
mental soliton with the same amplitude~dashed line! are
plotted in Fig. 3 for differentJ. It can be seen that for larg
J the form of the DM solitons is very close to the form of th
fundamental soliton. This result is an agreement with
theory presented in@5,24#.

Figure 4 shows how energy of the DM soliton depends
the average dispersion for different values ofJ. It is seen in
agreement with lossless model that the DM soliton can h
a finite energy even for zero average dispersion.

Figure 5 demonstrates the dynamics of the computed
tionary solution during 40 amplifier periods with short-sca
dispersion management forJ55. One can see that the DM
soliton resolved here with huge accuracy is stable and tra
along the system without any radiation.

C. Conclusions

We have presented results of theoretical and numer
study of the properties of path-averaged optical soliton
double-periodic DM systems. We propose a different num
cal method to compute DM solitons in the path-averag
models.
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FIG. 5. The dynamics of the computed stationary solution d
ing 40 amplifier periods with short-scale dispersion managemen
J55.
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