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Path-averaged optical soliton in double-periodic dispersion-managed systems
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A path-averaged Gabitov-Turitsyn model governing optical signal propagation down the dispersion-managed
(DM) transmission line is studied numerically. A different numerical algorithm to find a soliton solution for an
arbitrary periodic DM system is proposed. Applying developed technique we analyze soliton solutions for few
important practical systems.
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. INTRODUCTION loss. Function d(z)=d(2)+(d)=— Bx(2)Zo/(2t3) de-
scribes periodic compensation of dispersiwith the period
Dispersion management is a key technique in high-biti_in physical unity, whereg, is the first-order group veloc-
rate optical data transmission. The dispersion-manébt) ity dispersion. Periodigwith the periodZ, in real world
transmission systems use a periodic alternation of positivgnits) function ¢(2) :~c(z)+(c)=27-rn2POZOexp:—2y(z
and negative _dispers_iqn _fiber pieces. The aim of qlisperslioazm/(kerff) for z,<z<z. 1= z+Z4/Z, describes the
management is to minimize path-averaged dispersion of ling,yer variation due to fibre loss and amplifier gain that is

while keeping high enough local dispersion. In the linear, o\ nted through transformation of the pulse power at junc-

regime, total compensation of the path-averaged dispersiofy s corresponding to the locatioag of the optical ampli-
would lead to the total recovery of the signal. However, ing. <\ here n, is the nonlinear refraction indexj,

nonlinear propagation regimes an arbitrary pulse cannot be 1.55um is the carrier wavelengthh, is the effective
completely recovered at the ends of periodic sections. This iﬁber area. The amplification distanzélein general can be
possible only for pulses of the special form—DM solitons. In ifferent from the compensation peridd We consider a
this paper, we construct such special pulses for a range eneral case wheh and Z, are rational commensurable
double-periodic DM systems within the path-averaged mode amely,nZ,=mL=Z, with ie;negersn andm. This includes '

[1] as particular limits all known and studied cases and allows us
to describe a regime with short-scale<€Z,) management.

Il. PATH-AVERAGED MODEL IN SPECTRAL DOMAIN The distance=2/Z, is normalized in Eq(1) by a minimal
common periodZ, of the functionsd andc and the averag-
ing throughout the paper is over this period. In the normal-
ized units periodia andc have basic period$;=1/m and
T,=1/n, respectively.

If a characteristic nonlinear length of the pulse is larger
than the period of the dispersion variations then one can
) Lo ) . apply an averaging approach to simplify the basic equation.
whereA is a scaled envelope, periodic functid(z) with the  he resulting path-averaged Gabitov-Turitsyn equafibh

periodT, is a dispersion of the linéa dispersion mapand  resented in the spectral domain takes the following form:
T,-periodic functionc(z) describes power oscillations due to

loss or gain variations in the line. Discussion of the physical iV, —(dyw?¥ +G(¥,w)=0, 2
effects leading to Eq(1) and ical parameters can be . . .
found in Ref.[%]. We ?‘ollow hertgr:notatizns and normaliza- wh_ere\If(wk)_lsla Foungr transformation Qf an _averaged
tions introduced in Ref2]: zis normalized to a length, (in ~ V&rable, (d)=Jpd(z)dz is an average dispersion, and
km) defined below: timé is measured in some time constant (¥ ®) is @ nonlinear integral operator,

The propagation of an optical pulse in a DM fiber line is
described by a normalized nonlinear Salinger equation
(NLSE) with periodically varying coefficients,

iA,+d(2)Ax+c(2)|A]?A=0, (1)

to (in ps) that can be specified for each specific problem; an

envelope of the electric fiel& is normalized to the power G(‘l’,w)=f Tu123¥* (01) ¥V (w2) ¥ (w3) 6
parameterP, (in W), |E|?>=P|A|?exd —2y(z—2)] for z,

=z<z, 1= Zxt+Z,41Zy, wherevy is a coeffecient of a fiber X(w+w;—wy— w3)dodwdws,  (3)
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with a matrix element 1,5 that is a complex function of a T(A). The main goal of this paper is to study properties of
specific combinatiol Q = w?+ wi— w3— w3, the path-averaged DM solitons in few practical systems us-

ing proposed method.

1 )
To12s=T(AQ)= fo c(z)e'R@40qz, (4) B. Approximations of the matrix element

If the matrix elemenf (A()) is a polynomial or might be
approximated by polynomial then a computation of the inte-
Equation(2) has a standard form typical for models describ-gral operatoG can be reduced to computation of a sequence

of the correlations and the number of operations is equal to

ing a four-wave interaction with quadratic dispersion law. , o, . .
Specific properties of the model are then given by a depen(-S /2)Nlog,(N), whereSis a power of the polynomial. Con-

i i i = P
dence of the matrix elemerit on AQ). In the case of the sider a partial form of the matrix elemen{AQ)=(ALQ)".

so-called weak dispersion managemgismall” overall ef- Integrating byw; we eliminated function,
fect of a variation ofR(z)] Eq. (2) can be reduced to NLSE

A function R(z) is defined from equatiofR,=d(z)—(d).

with constant coefficient$3]. In this paper, we construct f [02+ 02— 05— (0+ 01— ©)2]PY* (1) P 0,)
numerically exact periodic solutiondM solitong of the
path-averaged modé¢®) for a range of practical DM lines. Xi(w+ w;— wy)dw,dw,. (6)

Using the identity w’+ w?—w5— (0+ 01— wy)°=2(w,

—w,)(w,—w) and introducing a new variabbe= w; — w»
Similar to the well-studied NLSET(=1), we seek a soli- we get

ton solution of Eqg. (2) in the form W(w,2)

= (w)exp(r?2). An equation for a DM soliton shapg(w)

takes a form

A. Soliton solution

ZpJ XP(wo+X—0)Py* (wo+X) P w5) Y 0+ X)dw,dX.

(7)
(N2 +(d)0?)y=G(¢,0). (5) _ _
Using the Newton formula we obtain
Note that for a real matrix elemeftone can find solution of p
this equation with a real functiofy(w). In general case the 2PJ XPE C';(—w)p*k(w2+x)k¢//*(w2+ X)(w5)
matrix element is a real function only for partial subclasses k=0
of transmission systems and corresponding coefficié(u} X i -+ X)dwdx. ®)

andc(z). The well-known and studied case of the real ma-
trix element is a lossless two-step DM system with matriXxpenoting fy(x) = [ (w,+X) ¢* (w,+X) h(w,)dw, we re-
elementT=cysin@GAQ)/(sAQ)), wheres is a map strength \yrite
andc(z) = ¢, [4]. Another important example of the real ma-
trix element is a long-scale dispersion-managed [iBg P
Note, however, that for a short-scale dispersion management ZpJ xP> Ci(— )P  (X) ( w+x)dx 9
the corresponding matrix element is complex. Here we say k=0
the long or short scale if the length of the dispersion man- P
Sﬁ;ia;nse'nt is greater or smaller than the distance between am- :ngo CI;(_ w)pfkgpk(w), (10)

An effective numerical method to find a soliton solution
for Eq. (5) was proposed by Petviashvilg,7] and was ap- Wheregy=/xPf(X) (w+Xx)dx.
plied to DM soliton problems in Ref§8—10]. A stabilizing It is seen that one has to compuyie- 1 integralsf, and
factor of this iteration method can be found easily becaus®+ 1 integralsg,.. Thus, we can estimate a number of op-
the right-hand size of the E¢5) is a homogeneous function eration as §2/2)N log,(N) for an arbitrary polynomial of a
with degree 3. See for details R¢8)]. Iterations used in the powerS
Petviashvili's method request a computation of the integral This computation method can be used for some approxi-
operatorG( i, w). After single integration using function,  mations of the initial Eq(2) [11,12. In this model the matrix
the operatorG(¢, ) includes a double integration, there- elementT(AQ) is approximated by the quadratic polyno-
fore, in general a computation @(i,w) requestsN® op-  mial T(AQ)=T(0)+T"(0)[(AQ)?/2], that is, the two first
erations, whereN is a number of points. Some advancedterms of the Taylor series.
approaches have been developed in R&0,21]. Here we
apply an effective numerical algorithm to solve this problem. ll. PATH-AVERAGED MODEL IN TIME DOMAIN
The idea of our method is based on an approximation of the
matrix elementT(AQ) by an appropriate set of functions.
This approximation allows us to apply a fast computation of Here we briefly recall previously obtained results on av-
convolutions and to reduce a number of operations taeraging of a double-periodic NLSE using slightly different
MN log,(N), where M depends on the approximation of approach5]. Basic model reads

A. Averaged equation
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iA,+d(2)Ay+c(2)|A|?A=0, (1) B. Averaged operator
In the case of two-step dispersion map built from a piece
here the functionsd(z) and c(z) are periodicd(z)=d(z  of a fiber with dispersionl, +(d) and lenght ; followed by
+Ty) andc(z) =c(z+Ty). a piece of a fiber with dispersioth,+(d) and lengthl ,=1
The first transform is called Floquet-Lyapunov one and—|,, the operatoN takes the form

eliminates the periodicity ofi(z),
s/2

1 ) . .
dR N(C)=¢ f S(y)e ¥P[e¥P°C(z,t)| %P C(z t) 1dy,
_ AiR(z)D2 bt _ 2 —sl2
A(t,z)=e B(t,z), E d(z)—(d), D e (18)
. wheres=d;l, and
<f>::f°f(2)dz' e sy)=tel [ L4+ 21+ (1=t e[ 1-[ L+ 2] (11

y)=l1 s 21 1 s 2( 1) |-

The equation takes the form (19

iBZ=—(d)DZB—c(z)e“R(Z)DZ[|e‘R(Z)DZB|2eiR(Z)DZB]. g?;) t:h((;:‘O Gabitov-Turitsyn model witte(z)=cy, we get
13 Note that from Eqs(18) and(19) it is seen that ifS(y) is

an even function then the matrix eleménis a real function.

In particular, ifl ;= 1/2 thenS(y) is the even function for any
function c(z) and therefore the matrix elementis real. Or

in other words, without loss of generality, we can choose a

The right-hand siddrhs) is periodic and we are able to
average this equation. To average Ef) in a correct way
the rhs should be small or E€L3) should have the so-called

Bogolyubov standardzforrﬁlg]. ) ) ) free constant in definition dR(z) to kill the imaginary part
The operatoe'®(?°" and its inverse one in the nonlinear of the matrix element for the long-scale dispersion manage-

term are bounded for any real functi®{z) because in Fou- ment with the equal two-piece elements.

rier space it is an exponential facter R@<’. Therefore, we

assume that(z) is small function. In the linear term we C. Integral approximation

have a combinatiofd)D? and therefore we can assume that

this combination is a small operator. Using a small parameter, PO @ computation of integral operatdi(C), we apply
¢ we specify the parametéd), the functionc(z), and the direct method. The first step is to compute the integral with
operatorD? to have the f0||OW’ing scaling: ’ respect tcs using some quadrature relations with weight co-

efficientsW,, at pointss,,

(d)D?~¢, c(2)~e. (14) M
N(C)~= X Wpe(sp)e RemD®
The first relation means that a soliton is not very narrow for m=0
(d)#0. The second condition means that the nonlinearity is
weak. Further, we imply these scales for a nota@s) and
similar. i 2 .
Next we apply the so-called Bogolyubov-Krylov trans- To compute the te_rmlR(sm)D C(Z’t.) we zipply the Fourier
form that eliminates the periodic part of the nonlinear terms{ransform, then multiply by factoe™'*m*", and make the

X[|eREMD*C(z,1)[2eREMP’C(Z,1)].  (20)

The resulting averaged equation is inverse Fourier transform again. And the last step is to apply
the operatolV,,c(s,)e”'RmP” using the direct and inverse
iC,+(d)D?C+N(C)=0(&?), (15)  Fourier transform. This procedure requesid 31 the Fou-
rier transforms withn log,(n) operations and @ multiplica-
where tions.

Also we remark that the functioR(s) is periodic and it is

1 _ ) reasonable to choosg, for equal values oR(s). Then we
N(C)=J c(s)e RID decrease a number of operations by factor of 2.
0

><[|eiR(S)D2C(Z t)|zeiR(s)D2C(Z t)]ds. (16 IV. EXAMPLES OF COMPUTATION

_ . We apply now our algorithm to find DM soliton solution
The corresponding transform has the following form: for a general case with different periods of power and dis-
persion oscillations. We consider different matrix elements

K » 2 2 . 2 corresponding to practical fiber optical lines.
B=C+i jo{c(s)e REPT]eREPC(s,1)[2eRP°C(s,1)] The simplest and important example of matrix element is
T(AQ)=cysin(AN/2)/(sAQ/2), wheres is the dispersion
—N(C)}ds. (17) map strength. This matrix element arises for lossless equa-
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tion with two-step dispersion map.

Next we consider the fiber lines with differefiiut ratio-
nal commensurableperiods of power and dispersion oscil-
lations. Namely, we analyze two opposite limits: the short-
scale dispersion management and long-scale two-step
dispersion map.

For considered cases, E() is characterized by six di-
mensionless parametebs; the averaged dispersigd), the
variation of the dispersiod, the nonlinearity parametex,
the loss parametdés = exp(2yZ,), and the ratio for the length
of the dispersion map and the distance between the amplifi-
ersL/Z,. For our numeric computation we pat=cy=1
and chooser=0.21 dB/km,y=0.05In 10, Z,= 40 km for
an evalutaion of the loss parameter

Time

FIG. 1. A dashed line corresponds to the DM soliton Ko 1
(two amplifiers for the dispersion peripénd a solid line corre-

First, we consider the case of a long-scale two-step dissponds to the DM soliton foK =40 (80 amplifiers for the disper-
persion management with=7,. Let the distance between sion period with (d)=0.01.
optical amplifiers beZ, (km) andL=2KZ, (km), whereK ) . _
—1,2,... .Dispersiond(z)=d+{(d) if 0<z<K andd(z) on .the parame’geh( is presentgd in Fig. 2. It is seen that DM
=—d+(d) if K<z<2K. Mean-free functionR defined soliton energy is saturated with the growthtaf
above can be found d@&(z)=d(z—K/2)/2 if 0<z<K and
R(z)=—d(z—3K/2)/2 if K<z<2K. A function c(z) is

A. Long-scale management

B. Short-scale management

c(2) = coexp(—2y2) if 0<z<1. The matrix elemert(AQ) Next we consider the so-called short-scale dispersion
of such a system is management with.<Z, [15,16. We choose the amplifier
distanceZ,, a two-step dispersion map with dispersion com-
sin XK] 1 pensation periodL=2Z,/J (km). Dispersion isd(z)=d
T(X)=coB(G) 5 +(d) if k/J<z<(k+a)/J and d(z)=da/(a—1)+(d) if
K (1+[2X/InG]?) (k+a)/J<z<(k+1)/J, herek=0,1,2...,J—1 and the

cogX] 2X G+1 parameterae (0,1) describes a position of the step. The

Xy — (21  mean-free functiorRk defined above can be found &¢z)
sifX] InGG-1 =d[z—k/J—al(2)] if klI<z<(k+a)/J and R(2)
=da/(a—1)[z—klI—(a+1)/(23)] if (k+a)ld<z<(k
_AQz,d_ Aod (G)= G-1 +1)/J. The matrix elemenf ,,;,; has a self-similar struc-
2L 4K ’ GInG’ ture,
Here gainG=exp(2yZ,) (y is a fiber loss The matrix ele- To123= CoB(G)F(a,2,Y), (23

ment has some particular limits. First,d&=0 (uniform dis-
persion along the systemve reproduce the result of Mol-
lenaueret al. [17]: T(AQ)=(G—1)/(GIn G) and becaus&

is a constant, path-averaged model is just the integrable NLS .
equation. Second limit is the so-called “lossless” modit] x e a2, (24)
(y=0). In this caseT(AQ)=sin(AQd/4)/(AQd/4). For

largeK the matrix element is 295

d e(l—a)Z+iaY_1
1_(91_1)(r—mz+4av

iY

F(a,Z,Y)= —

+
1 Z

sin(AQd/4)

T(AQ) = COB(G) W

(22 2.9 _

Note that such matrix element presents the matrix element of §

the lossless model multiplied by the factB(G), where 2

B(G)=1 asG goes to 1 for the real lossless model. w L
For a numeric computation we choose the variation of the 28} :

dispersiond=2. Figure 1 shows the power of the true DM -

solitons obtained as a solution of E&) for the matrix ele- L BBEEE B T

ment(21). A dashed line corresponds to the DM soliton for 275F ©

K=1 (two amplifiers for the dispersion peripdnd a solid Y S T — T —

line corresponds to the DM soliton fé&= 40 (80 amplifiers K

for the dispersion perigd Dependence of the energy of DM FIG. 2. Energy of the DM soliton vs parametir for (d)

soliton (for two different values of the averaged dispergion =0.005(solid line) and for{d)=0.01 (dotted ling.
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FIG. 3. The power of the DM soliton&olid line) and the fun-
damental soliton with the same amplitu@dashed lingfor different

J.

Here an amplitud® is a function ofG=exp(2yZ,) only and
is independent od. A shapeF(a,Z,Y) is a function of the
parametera and specific combinations &=1InG/J and Y
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Frequency

FIG. 5. The dynamics of the computed stationary solution dur-
ing 40 amplifier periods with short-scale dispersion management for
J=5.

this limit and solution(of the path-averaged modeshould
be close to cosh-like soliton of the NLSE. Note that although
it is known that for the lossless model in the so-called weak

=dAQ/J.
In the limit d=0 we obviously recover results of the tra-
ditional path-averaged (guiding-center soliton theory

map (<1) limit [1,14,22,23the DM soliton shape is close

to cosh, this is not so obvious for system with loss and dif-

[17-19. One can see that with increase Dbffor the fixed ~ferent periods of amplification and dispersion variations.

other parameteysthe path-averaged modé®) governing | his also means that all the control techniques developed for
DM soliton propagation converges to the integrable NLSthe improvement of the traditional soliton transmission can

equation withT(0)=cyB(G). It is obvious that in the limit
of a very weak losgsmall y) we again obtain foiT the
lossless model approximatioifi;,;,5= Cosin@Y)/(aY). How-
ever, increase af (decrease of) under the fixed character- v " ' g
istic bandwidth of the signal makes insignificant oscillatoryMental soliton with the same amplituddashed ling are
structure of the kerngf20]. This means that ifT(AQ) is
practically concentrated in some region, then for laighe
corresponding region idhQ will be larger than for small.

For the pulses with the same spectral width this will mea

thatT is much flatter for largel and, as a matter of fact, for

largeJ (smallL) function T can be well approximated by a

value T(0). As aresult, NLSE model works rather well in

FIG. 4. The dependence of the DM soliton energy on the aver-

Average dispersion <d>

age dispersion for differerdt J=1 (solid line), J=40 (dashed ling
and for the casd tends to infinity(dotted ling.

be directly used in these systems.

For a numerical computation we choose the following pa-
rametersa=0.5, d=0.5, and(d)=0.01.

The power of the DM solitongsolid line) and the funda-

plotted in Fig. 3 for different). It can be seen that for large
Jthe form of the DM solitons is very close to the form of the
fundamental soliton. This result is an agreement with the

riheory presented if6,24].

Figure 4 shows how energy of the DM soliton depends on
the average dispersion for different valuesloft is seen in
agreement with lossless model that the DM soliton can have
a finite energy even for zero average dispersion.

Figure 5 demonstrates the dynamics of the computed sta-

4 ;EE/E/E//E tionary solution during 40 amplifier periods with short-scale
{ dispersion management fd=5. One can see that the DM
I —a— J=1 soliton resolved here with huge accuracy is stable and travels
sk T -a--J=40 along the system without any radiation.
v J=o0o0
ot
2 | C. Conclusions
2 A
T PR v We have presented results of theoretical and numerical
S study of the properties of path-averaged optical soliton in
L AT : double-periodic DM systems. We propose a different numeri-
Dgﬁ‘k_ v cal method to compute DM solitons in the path-averaged
—a models.
Y . .oy
001 002 003 004 0.5
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